🎉 First commit
This commit is contained in:
commit
4f3f6de44a
22 changed files with 3123 additions and 0 deletions
93
dags/load_raw_data.py
Normal file
93
dags/load_raw_data.py
Normal file
|
@ -0,0 +1,93 @@
|
|||
"""
|
||||
Airflow DAG to load raw data from speadsheet into database.
|
||||
|
||||
Author
|
||||
------
|
||||
Nicolas Rojas
|
||||
"""
|
||||
|
||||
# imports
|
||||
import os
|
||||
from datetime import datetime
|
||||
import pandas as pd
|
||||
from airflow import DAG
|
||||
from airflow.operators.python import PythonOperator
|
||||
from airflow.providers.mysql.hooks.mysql import MySqlHook
|
||||
|
||||
|
||||
def check_table_exists():
|
||||
"""Check whether raw_clients table exists in raw_data database. If not, create it."""
|
||||
# count number of rows in raw data table
|
||||
query = 'SELECT COUNT(*) FROM information_schema.tables WHERE table_name="raw_clients"'
|
||||
mysql_hook = MySqlHook(mysql_conn_id="raw_data", schema="raw_data")
|
||||
connection = mysql_hook.get_conn()
|
||||
cursor = connection.cursor()
|
||||
cursor.execute(query)
|
||||
results = cursor.fetchall()
|
||||
# check whether table exists
|
||||
if results[0][0] == 0:
|
||||
# create table
|
||||
print("----- table does not exists, creating it")
|
||||
create_sql = "CREATE TABLE `raw_clients`\
|
||||
(`id` BIGINT,\
|
||||
`age` SMALLINT,\
|
||||
`anual_income` BIGINT,\
|
||||
`credit_score` SMALLINT,\
|
||||
`loan_amount` BIGINT,\
|
||||
`loan_duration_years` TINYINT,\
|
||||
`number_of_open_accounts` SMALLINT,\
|
||||
`had_past_default` TINYINT,\
|
||||
`loan_approval` TINYINT\
|
||||
)"
|
||||
mysql_hook.run(create_sql)
|
||||
else:
|
||||
# no need to create table
|
||||
print("----- table already exists")
|
||||
|
||||
return "Table checked"
|
||||
|
||||
|
||||
def store_data():
|
||||
"""Store raw data in respective table and database."""
|
||||
# Path to the raw training data
|
||||
_data_root = "./data"
|
||||
_data_filename = "dataset.csv"
|
||||
_data_filepath = os.path.join(_data_root, _data_filename)
|
||||
|
||||
# read data and obtain variable names
|
||||
dataframe = pd.read_csv(_data_filepath)
|
||||
dataframe.rename(columns={"Unnamed: 0": "ID"}, inplace=True)
|
||||
sql_column_names = [name.lower() for name in dataframe.columns]
|
||||
|
||||
# insert every dataframe row into sql table
|
||||
mysql_hook = MySqlHook(mysql_conn_id="raw_data", schema="raw_data")
|
||||
conn = mysql_hook.get_conn()
|
||||
cur = conn.cursor()
|
||||
# VALUES in query are %s repeated as many columns are in dataframe
|
||||
sql_column_names = ", ".join(
|
||||
["`" + name + "`" for name in sql_column_names]
|
||||
)
|
||||
query = f"INSERT INTO `raw_clients` ({sql_column_names}) \
|
||||
VALUES ({', '.join(['%s' for _ in range(dataframe.shape[1])])})"
|
||||
dataframe = list(dataframe.itertuples(index=False, name=None))
|
||||
cur.executemany(query, dataframe)
|
||||
conn.commit()
|
||||
|
||||
return "Data stored"
|
||||
|
||||
|
||||
with DAG(
|
||||
"load_data",
|
||||
description="Read data from source and store it in raw_data database",
|
||||
start_date=datetime(2024, 9, 18, 0, 0),
|
||||
schedule_interval="@once",
|
||||
) as dag:
|
||||
|
||||
check_table_task = PythonOperator(
|
||||
task_id="check_table_exists", python_callable=check_table_exists
|
||||
)
|
||||
store_data_task = PythonOperator(
|
||||
task_id="store_data", python_callable=store_data
|
||||
)
|
||||
|
||||
check_table_task >> store_data_task
|
Loading…
Add table
Add a link
Reference in a new issue