--- x-airflow-common: &airflow-common # In order to add custom dependencies or upgrade provider packages you can use your extended image. # Comment the image line, place your Dockerfile in the directory where you placed the docker-compose.yaml # and uncomment the "build" line below, Then run `docker-compose build` to build the images. #image: ${AIRFLOW_IMAGE_NAME:-apache/airflow:2.6.0} build: ./docker/airflow # build: . environment: &airflow-common-env AIRFLOW__CORE__EXECUTOR: CeleryExecutor AIRFLOW__DATABASE__SQL_ALCHEMY_CONN: postgresql+psycopg2://airflow:airflow@postgres/airflow AIRFLOW__CELERY__RESULT_BACKEND: db+postgresql://airflow:airflow@postgres/airflow AIRFLOW__CELERY__BROKER_URL: redis://:@redis:6379/0 AIRFLOW__CORE__FERNET_KEY: '' AIRFLOW__CORE__DAGS_ARE_PAUSED_AT_CREATION: 'true' AIRFLOW__CORE__LOAD_EXAMPLES: 'False' AIRFLOW__API__AUTH_BACKENDS: 'airflow.api.auth.backend.basic_auth,airflow.api.auth.backend.session' AIRFLOW_CONN_RAW_DATA: 'mysql://${MYSQL_USER}:${MYSQL_PASSWORD}@db_raw:${MYSQL_RAW_PORT}/${MYSQL_RAW_DATABASE}' AIRFLOW_CONN_CLEAN_DATA: 'mysql://${MYSQL_USER}:${MYSQL_PASSWORD}@db_clean:${MYSQL_CLEAN_PORT}/${MYSQL_CLEAN_DATABASE}' # yamllint disable rule:line-length # Use simple http server on scheduler for health checks # See https://airflow.apache.org/docs/apache-airflow/stable/administration-and-deployment/logging-monitoring/check-health.html#scheduler-health-check-server # yamllint enable rule:line-length AIRFLOW__SCHEDULER__ENABLE_HEALTH_CHECK: 'true' # WARNING: Use _PIP_ADDITIONAL_REQUIREMENTS option ONLY for a quick checks # for other purpose (development, test and especially production usage) build/extend Airflow image. _PIP_ADDITIONAL_REQUIREMENTS: ${_PIP_ADDITIONAL_REQUIREMENTS:-} volumes: - ${AIRFLOW_PROJ_DIR:-.}/dags:/opt/airflow/dags - ${AIRFLOW_PROJ_DIR:-.}/logs:/opt/airflow/logs - ${AIRFLOW_PROJ_DIR:-.}/plugins:/opt/airflow/plugins user: "${AIRFLOW_UID:-50000}:0" depends_on: &airflow-common-depends-on redis: condition: service_healthy postgres: condition: service_healthy services: db: restart: always image: mysql/mysql-server:5.7.28 container_name: mlflow_db ports: - "${MYSQL_PORT}:3306" networks: - backend environment: - MYSQL_DATABASE=${MYSQL_DATABASE} - MYSQL_USER=${MYSQL_USER} - MYSQL_PASSWORD=${MYSQL_PASSWORD} - MYSQL_ROOT_PASSWORD=${MYSQL_ROOT_PASSWORD} volumes: - ./db_ml_data:/var/lib/mysql db_raw: restart: always image: mysql/mysql-server:5.7.28 container_name: raw_data_db ports: - "${MYSQL_RAW_PORT}:3306" networks: - backend environment: - MYSQL_DATABASE=${MYSQL_RAW_DATABASE} - MYSQL_USER=${MYSQL_USER} - MYSQL_PASSWORD=${MYSQL_PASSWORD} - MYSQL_ROOT_PASSWORD=${MYSQL_ROOT_PASSWORD} volumes: - ./db_raw_data:/var/lib/mysql db_clean: restart: always image: mysql/mysql-server:5.7.28 container_name: clean_data_db ports: - "${MYSQL_CLEAN_PORT}:3306" networks: - backend environment: - MYSQL_DATABASE=${MYSQL_CLEAN_DATABASE} - MYSQL_USER=${MYSQL_USER} - MYSQL_PASSWORD=${MYSQL_PASSWORD} - MYSQL_ROOT_PASSWORD=${MYSQL_ROOT_PASSWORD} volumes: - ./db_clean_data:/var/lib/mysql fast_api: build: ./docker/fast_api ports: - 8086:8086 container_name: fast_api depends_on: - db_raw - db_clean networks: - backend volumes: - ./src/back:/opt/code/ command: "uvicorn opt.code.main:app --host 0.0.0.0 --port 8086 --reload" minio: container_name: minio command: server /data --console-address ":${MINIO_CONSOLE_PORT}" --address ':${MINIO_PORT}' environment: - MINIO_ROOT_USER=${MINIO_ROOT_USER} - MINIO_ROOT_PASSWORD=${MINIO_ROOT_PASSWORD} image: quay.io/minio/minio:latest ports: - "${MINIO_PORT}:8081" - "${MINIO_CONSOLE_PORT}:8082" networks: - backend volumes: - ./minio_data:/data restart: unless-stopped mlflow: restart: always build: ./docker/mlflow image: mlflow container_name: mlflow depends_on: - db - minio ports: - "${MLFLOW_PORT}:8083" networks: - backend environment: - AWS_ACCESS_KEY_ID=${MINIO_ACCESS_KEY} - AWS_SECRET_ACCESS_KEY=${MINIO_SECRET_ACCESS_KEY} - MLFLOW_S3_ENDPOINT_URL=http://minio:${MINIO_PORT} - MLFLOW_TRACKING_URI=http://mlflow:${MLFLOW_PORT} - BACKEND_STORE_URI=mysql+pymysql://${MYSQL_USER}:${MYSQL_PASSWORD}@db:${MYSQL_PORT}/${MYSQL_DATABASE} - DEFAULT_ARTIFACT_ROOT=s3://minio:${MINIO_PORT} - MLFLOW_S3_IGNORE_TLS=true command: > mlflow server --backend-store-uri mysql+pymysql://${MYSQL_USER}:${MYSQL_PASSWORD}@db:${MYSQL_PORT}/${MYSQL_DATABASE} --host 0.0.0.0 --port ${MLFLOW_PORT} --serve-artifacts --artifacts-destination s3://${MLFLOW_BUCKET_NAME}/ --default-artifact-root s3://${MLFLOW_BUCKET_NAME}/ work_jupyter: build: ./docker/jupyter volumes: - ./:/home/jovyan/work ports: - 8085:8888 container_name: jupyter networks: - backend command: "jupyter lab --ip=0.0.0.0 --allow-root --NotebookApp.token='' --NotebookApp.password=''" postgres: image: postgres:13 environment: POSTGRES_USER: airflow POSTGRES_PASSWORD: airflow POSTGRES_DB: airflow volumes: - postgres-db-volume:/var/lib/postgresql/data healthcheck: test: ["CMD", "pg_isready", "-U", "airflow"] interval: 10s retries: 5 start_period: 5s restart: always networks: - backend redis: image: redis:7.2-bookworm expose: - 6379 healthcheck: test: ["CMD", "redis-cli", "ping"] interval: 10s timeout: 30s retries: 50 start_period: 30s restart: always networks: - backend airflow-webserver: <<: *airflow-common command: webserver ports: - "8080:8080" healthcheck: test: ["CMD", "curl", "--fail", "http://localhost:8080/health"] interval: 30s timeout: 10s retries: 5 start_period: 30s restart: always depends_on: <<: *airflow-common-depends-on airflow-init: condition: service_completed_successfully networks: - backend airflow-scheduler: <<: *airflow-common command: scheduler healthcheck: test: ["CMD", "curl", "--fail", "http://localhost:8974/health"] interval: 30s timeout: 10s retries: 5 start_period: 30s restart: always depends_on: <<: *airflow-common-depends-on airflow-init: condition: service_completed_successfully networks: - backend airflow-worker: <<: *airflow-common command: celery worker healthcheck: test: - "CMD-SHELL" - 'celery --app airflow.providers.celery.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}" || celery --app airflow.executors.celery_executor.app inspect ping -d "celery@$${HOSTNAME}"' interval: 30s timeout: 10s retries: 5 start_period: 30s environment: <<: *airflow-common-env # Required to handle warm shutdown of the celery workers properly # See https://airflow.apache.org/docs/docker-stack/entrypoint.html#signal-propagation DUMB_INIT_SETSID: "0" restart: always depends_on: <<: *airflow-common-depends-on airflow-init: condition: service_completed_successfully networks: - backend airflow-triggerer: <<: *airflow-common command: triggerer healthcheck: test: ["CMD-SHELL", 'airflow jobs check --job-type TriggererJob --hostname "$${HOSTNAME}"'] interval: 30s timeout: 10s retries: 5 start_period: 30s restart: always depends_on: <<: *airflow-common-depends-on airflow-init: condition: service_completed_successfully networks: - backend airflow-init: <<: *airflow-common entrypoint: /bin/bash # yamllint disable rule:line-length command: - -c - | if [[ -z "${AIRFLOW_UID}" ]]; then echo echo -e "\033[1;33mWARNING!!!: AIRFLOW_UID not set!\e[0m" echo "If you are on Linux, you SHOULD follow the instructions below to set " echo "AIRFLOW_UID environment variable, otherwise files will be owned by root." echo "For other operating systems you can get rid of the warning with manually created .env file:" echo " See: https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#setting-the-right-airflow-user" echo fi one_meg=1048576 mem_available=$$(($$(getconf _PHYS_PAGES) * $$(getconf PAGE_SIZE) / one_meg)) cpus_available=$$(grep -cE 'cpu[0-9]+' /proc/stat) disk_available=$$(df / | tail -1 | awk '{print $$4}') warning_resources="false" if (( mem_available < 4000 )) ; then echo echo -e "\033[1;33mWARNING!!!: Not enough memory available for Docker.\e[0m" echo "At least 4GB of memory required. You have $$(numfmt --to iec $$((mem_available * one_meg)))" echo warning_resources="true" fi if (( cpus_available < 2 )); then echo echo -e "\033[1;33mWARNING!!!: Not enough CPUS available for Docker.\e[0m" echo "At least 2 CPUs recommended. You have $${cpus_available}" echo warning_resources="true" fi if (( disk_available < one_meg * 10 )); then echo echo -e "\033[1;33mWARNING!!!: Not enough Disk space available for Docker.\e[0m" echo "At least 10 GBs recommended. You have $$(numfmt --to iec $$((disk_available * 1024 )))" echo warning_resources="true" fi if [[ $${warning_resources} == "true" ]]; then echo echo -e "\033[1;33mWARNING!!!: You have not enough resources to run Airflow (see above)!\e[0m" echo "Please follow the instructions to increase amount of resources available:" echo " https://airflow.apache.org/docs/apache-airflow/stable/howto/docker-compose/index.html#before-you-begin" echo fi mkdir -p /sources/logs /sources/dags /sources/plugins chown -R "${AIRFLOW_UID}:0" /sources/{logs,dags,plugins} exec /entrypoint airflow version # yamllint enable rule:line-length environment: <<: *airflow-common-env _AIRFLOW_DB_UPGRADE: 'true' _AIRFLOW_WWW_USER_CREATE: 'true' _AIRFLOW_WWW_USER_USERNAME: ${_AIRFLOW_WWW_USER_USERNAME:-airflow} _AIRFLOW_WWW_USER_PASSWORD: ${_AIRFLOW_WWW_USER_PASSWORD:-airflow} _PIP_ADDITIONAL_REQUIREMENTS: '' user: "0:0" volumes: - ${AIRFLOW_PROJ_DIR:-.}:/sources networks: - backend airflow-cli: <<: *airflow-common profiles: - debug environment: <<: *airflow-common-env CONNECTION_CHECK_MAX_COUNT: "0" # Workaround for entrypoint issue. See: https://github.com/apache/airflow/issues/16252 command: - bash - -c - airflow networks: - backend # You can enable flower by adding "--profile flower" option e.g. docker-compose --profile flower up # or by explicitly targeted on the command line e.g. docker-compose up flower. # See: https://docs.docker.com/compose/profiles/ flower: <<: *airflow-common command: celery flower profiles: - flower ports: - "5555:5555" healthcheck: test: ["CMD", "curl", "--fail", "http://localhost:5555/"] interval: 30s timeout: 10s retries: 5 start_period: 30s restart: always depends_on: <<: *airflow-common-depends-on airflow-init: condition: service_completed_successfully networks: - backend volumes: postgres-db-volume: db_ml_data: db_raw_data: db_clean_data: minio_data: networks: backend: driver: bridge