20 KiB
20 KiB
In [1]:
import matplotlib.pyplot as plt import torch from torch import nn from torch.utils.data import DataLoader from torchvision import datasets from torchvision.transforms import ToTensor from tqdm import tqdm
In [2]:
training_data = datasets.FashionMNIST( root="data", train=True, download=True, transform=ToTensor() ) test_data = datasets.FashionMNIST( root="data", train=False, download=True, transform=ToTensor() )
In [3]:
batch_size = 64 # Create data loaders. train_dataloader = DataLoader(training_data, batch_size=batch_size, shuffle=True) test_dataloader = DataLoader(test_data, batch_size=batch_size) for X, y in test_dataloader: print(f"Shape of X [N, C, H, W]: {X.shape}") print(f"Shape of y: {y.shape} {y.dtype}") break
Shape of X [N, C, H, W]: torch.Size([64, 1, 28, 28]) Shape of y: torch.Size([64]) torch.int64
In [4]:
# Get cpu or gpu device for training. device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using {device} device") # Define model class NeuralNetwork(nn.Module): def __init__(self): super(NeuralNetwork, self).__init__() self.flatten = nn.Flatten() self.linear_stack = nn.Sequential( nn.Linear(28 * 28, 512), nn.Hardswish(), nn.Linear(512, 512), nn.Hardswish(), nn.Linear(512, 10) ) def forward(self, x): x = self.flatten(x) logits = self.linear_stack(x) return logits model = NeuralNetwork().to(device) print(model)
Using cuda device NeuralNetwork( (flatten): Flatten(start_dim=1, end_dim=-1) (linear_stack): Sequential( (0): Linear(in_features=784, out_features=512, bias=True) (1): Hardswish() (2): Linear(in_features=512, out_features=512, bias=True) (3): Hardswish() (4): Linear(in_features=512, out_features=10, bias=True) ) )
In [5]:
def train( dataloader: DataLoader, model: NeuralNetwork, loss_fn: nn.Module, optimizer: torch.optim.Optimizer, epoch: int, verbose: bool = True, ): model.train() for X, y in tqdm( dataloader, desc=f"Epoch {epoch+1}", disable=not verbose, unit=" batch" ): X, y = X.to(device), y.to(device) # Compute prediction error pred = model(X) loss = loss_fn(pred, y) # Backpropagation optimizer.zero_grad() loss.backward() optimizer.step() def test(dataloader: DataLoader, model: NeuralNetwork, loss_fn: nn.Module): size = len(dataloader.dataset) num_batches = len(dataloader) model.eval() test_loss, correct = 0, 0 with torch.inference_mode(): for X, y in dataloader: X, y = X.to(device), y.to(device) pred = model(X) test_loss += loss_fn(pred, y).item() correct += (pred.argmax(1) == y).type(torch.float).sum().item() test_loss /= num_batches correct /= size print(f"Test accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
In [6]:
loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.AdamW(model.parameters(), lr=1e-3) epochs = 10 for t in range(epochs): train(train_dataloader, model, loss_fn, optimizer, t) test(test_dataloader, model, loss_fn) print("Done!")
Epoch 1: 100%|██████████| 938/938 [00:18<00:00, 51.42 batch/s]
Test accuracy: 84.6%, Avg loss: 0.416450
Epoch 2: 100%|██████████| 938/938 [00:17<00:00, 53.97 batch/s]
Test accuracy: 86.8%, Avg loss: 0.379103
Epoch 3: 100%|██████████| 938/938 [00:16<00:00, 56.64 batch/s]
Test accuracy: 87.3%, Avg loss: 0.358019
Epoch 4: 100%|██████████| 938/938 [00:17<00:00, 53.37 batch/s]
Test accuracy: 86.9%, Avg loss: 0.356684
Epoch 5: 100%|██████████| 938/938 [00:16<00:00, 57.66 batch/s]
Test accuracy: 87.5%, Avg loss: 0.342070
Epoch 6: 100%|██████████| 938/938 [00:15<00:00, 60.13 batch/s]
Test accuracy: 88.3%, Avg loss: 0.331236
Epoch 7: 100%|██████████| 938/938 [00:17<00:00, 53.23 batch/s]
Test accuracy: 88.4%, Avg loss: 0.316383
Epoch 8: 100%|██████████| 938/938 [00:19<00:00, 48.65 batch/s]
Test accuracy: 88.7%, Avg loss: 0.316623
Epoch 9: 100%|██████████| 938/938 [00:18<00:00, 49.89 batch/s]
Test accuracy: 88.8%, Avg loss: 0.326257
Epoch 10: 100%|██████████| 938/938 [00:17<00:00, 55.03 batch/s]
Test accuracy: 89.2%, Avg loss: 0.328708 Done!
In [7]:
torch.save(model.state_dict(), "model.pth") print("Saved PyTorch Model State to model.pth") model = NeuralNetwork() load_results = model.load_state_dict(torch.load("model.pth"))
Saved PyTorch Model State to model.pth
In [8]:
classes = [ "T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot", ] x, y = test_data[0][0], test_data[0][1] plt.imshow(x.numpy()[0], cmap="gray") plt.show() model.eval() with torch.inference_mode(): logits = model(x) pred = torch.softmax(logits, dim=1) predicted, actual = classes[pred[0].argmax(0)], classes[y] print(f'Predicted: "{predicted}", Actual: "{actual}"')
Predicted: "Ankle boot", Actual: "Ankle boot"